BOUNDARY BASED SUPERVISED CLASSIFICATION OF HYPERSPECTRAL IMAGES WITH LIMITED TRAINING SAMPLES
نویسندگان
چکیده
منابع مشابه
Hyperspectral CNN Classification with Limited Training Samples
Hyperspectral imaging sensors are becoming increasingly popular in robotics applications such as agriculture and mining, and allow per-pixel thematic classification of materials in a scene based on their unique spectral signatures. Recently, convolutional neural networks have shown remarkable performance for classification tasks, but require substantial amounts of labelled training data. This d...
متن کاملGMM-Based Synthetic Samples for Classification of Hyperspectral Images With Limited Training Data
The amount of training data that is required to train a classifier scales with the dimensionality of the feature data. In hyperspectral remote sensing, feature data can potentially become very high dimensional. However, the amount of training data is oftentimes limited. Thus, one of the core challenges in hyperspectral remote sensing is how to perform multi-class classification using only relat...
متن کاملA Novel Tri-Training Technique for Semi-Supervised Classification of Hyperspectral Images Based on Diversity Measurement
This paper introduces a novel semi-supervised tri-training classification algorithm based on diversity measurement for hyperspectral imagery. In this algorithm, three measures of diversity, i.e., double-fault measure, disagreement metric and correlation coefficient, are applied to select the optimal classifier combination from different classifiers, e.g., support vector machine (SVM), multinomi...
متن کاملFeature extraction of hyperspectral images using boundary semi-labeled samples and hybrid criterion
Feature extraction is a very important preprocessing step for classification of hyperspectral images. The linear discriminant analysis (LDA) method fails to work in small sample size situations. Moreover, LDA has poor efficiency for non-Gaussian data. LDA is optimized by a global criterion. Thus, it is not sufficiently flexible to cope with the multi-modal distributed data. We propose a new fea...
متن کاملBand Selection with CFI and Supervised Classification for Hyperspectral Images
In this paper, we propose a new feature selection method for hyperspectral images. Firstly, the bands are selected by combining the information entropy, classification separability and correlation coefficients with the Choquet fuzzy integral. After that, maximum likelihood classification method is used for the classification. Experiments on the AVIRIS dataset show that the proposed method remov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
سال: 2013
ISSN: 2194-9034
DOI: 10.5194/isprsarchives-xl-1-w3-203-2013